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Abstract

Rising popularity of smartphone applications has led us to the need for energy

aware testing. Performing energy testing along with the functional testing is a

labor-intensive task specially for those large sized applications that are continu-

ously evolving. Software usually evolves in order to cope with the changing market

or consumer needs. Currently there is a dearth of energy-based testing techniques

that consider program’s energy bugs in parallel with the functional bugs.

Regression testing (RT) is required when there is a need to test the modified part of

the system. RT techniques provide confidence that the newly incorporated changes

do not affect the unchanged parts of the system. RT is further classified into: TCP

(Test Case Prioritization); which prioritizes the test suite based on some criteria,

TSM (Test Suite Minimization); aims to eliminate the redundant test cases and

TCS (Test Case Selection); that selects only those test cases which traverse the

modified part of the system. In general, a number of techniques exist that perform

TCP using traditional white box or black box coverage criteria. Likewise, some of

the researchers presented techniques based on application’s energy consumption

and energy optimization. But hardly any of the research has been conducted

on test case prioritization using the energy bugs and functional bugs as primary

coverage criteria. The existing techniques in energy aware domain focus on test

case minimization at application level by considering energy coverage as the major

coverage criteria. These techniques calculate the energy cost of each segment and

then perform optimization based on the energy greedy segments. While other

techniques focus on only the multiple code coverage criterion.

In this work, we have proposed a TCP approach that uses code level energy bugs

and statement coverage as primary criterion. The proposed approach uses the

additional strategy to prioritize the test suite. The energy bugs coverage has been

gathered by statically analyzing the code and then weights have been assigned to

each test paths. The weights of each test path are calculated using the normalized

energy-bug weight and the statement coverage. Using those assigned weights the
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test paths are prioritized. Two variants of APFD metric (i.e., APFD-bug variant

and APFD-Statement Coverage variant) have been used to evaluate the proposed

technique. We have presented the evaluation results of 10 different Android ap-

plications. Results show that the proposed approach is able to detect 72-87% of

the bugs.
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Chapter 1

Introduction

Now-a-days software systems are continuously evolving due to the need of fixing

detected bugs, incorporating additional functionalities and restructuring or re-

designing system architecture. Therefore, the need for software testing arises to

perform authenticating and evaluating the additional functionalities of software

systems with the existing ones [1].

1.1 Regression Testing

Regression testing is performed for providing the confidence that the newly incor-

porated changes do not affect the previous functionality or unchanged part of the

system [2]. Therefore, regression testing is required where there is need to test

the newly built version of the software which is obtained by modifying previous

version [3].

Regression testing is further categorized into: Corrective Regression testing and

Progressive Regression testing. Corrective regression testing is the testing of

the program which was obtained by making corrections to the previous version of

the program while Progressive regression testing is testing the program which

was obtained by adding the new functionalities in the previous program version

[4].

1
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As the software evolves, size of the test suite increases which makes it costly to

execute the entire test suite [2]. Therefore, regression testing can be classified into

three domains:

• Test case selection: aims to identify the test cases which traverse the modified

and affected parts of the program. Selection technique recognizes those test

cases which would be important to test the latest changes of software [5].

• Test suite minimization: aims at identifying and eliminating the redundant

test cases with the goal to reduce the size of test suite. This test case

reduction is based on some criteria for example if test cases t and t1 belongs

to the test suite T and covers the same function F of the program P, then

any of the test case will be discarded in the favor of other. The selected

test cases are placed in minimal hitting set, identifying which is an NP hard

problem [6].

While, in test cases minimization the test cases are permanently eliminated.

[3].

• Test case prioritization: aims to prioritize the test cases based on some

criteria. This approach provides the ability to give priority to the highly

significant test cases based on some measures like early fault detection [7].

Test case prioritization ranks the test cases using a suitable metric. Prioritization

does not discard any test case rather it just prioritizes them. Regression testing

involves execution of large number of test cases which may be time consuming. To

cope with this problem the researchers have proposed various techniques for test

case prioritization [8]. These approaches can be further classified into coverage-

based TCP, historic information-based TCP, cost-aware, time-aware TCP and

risk-aware TCP [9], further elaborated as follows.

1. Coverage-Based TCP: This is the fundamental approach in prioritization

process which analyzes the code directly. Traditionally, branch, function

and statements are considered as the most covered coverage criteria [10].
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2. History-Based TCP: this technique uses the history information of each test

case to prioritize the test cases. The technique aims to improve the fault

detection rate by using the historic fault data of a test case [11].

3. Cost Cognizant TCP: Cost-aware prioritization technique was first presented

by [12]. The proposed cost-cognizant technique estimates the number of

faults detected per unit testing using genetic algorithm.

4. Time-aware TCP: Multi-objective time-aware prioritization aims to find the

ideal sequence of the test cases within the given time constraint [13].

5. Risk-aware TCP: This technique is mainly applied in the projects which are

concerned with the software’s risk related values while developing. Due to

this, some researchers use this information in the process of prioritization.

Risk-aware prioritization aims to categorize the test cases which have to

distinguish the system’s risk fault in earlier stages [14].

6. Model-based TCP: This type of testing is applied where source code related

information is not available. System models and output of the test cases are

used to perform test case reordering. [15].

1.2 Coverage-Based TCP

Measuring coverage requires code portioning into sub-units like methods, branches

or statements. Coverage based TCP approach chooses a level of partitioning and

defines coverage over those elements [16].

In the field of test case prioritization the following two approaches are commonly

used,

1. Code Coverage Criteria based approach

2. Algorithm based TCP
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which are further explained as follows:

1.2.1 Code Coverage Criteria

Coverage based prioritization aims to provide maximum coverage of the program

elements [9]. Broadly, white box and black box prioritization covers the coverage

criteria-based TCP approaches.

Black box-based testing approaches do not require source code information. These

types of approaches use software models and their interactions for testing purpose.

System’s input and outputs are used to prioritize the test cases according to the

diversity measures [17]. T-wise, Input Model Diversity (IMD), Total Input Model

Mutation etc. are the major black box TCP approaches.

Whereas, white box prioritization approaches require source code information

making it more efficient in early detection of faults and provide complete cov-

erage of the code. These type of prioritization approaches use additional or total

strategy for providing the coverage to the basic code elements (statement, branch

and method) [18].

1.2.2 Algorithm Based TCP

The traditional Test Case Prioritization algorithm is the greedy algorithm which

chooses the locally optimal solution in every iteration to reach global optimal

solution [3]. Researchers have worked in the area to propose approach that can

produce the optimized solution. In literature, many algorithms have been proposed

that use genetic programming or ILP based optimized prioritization approaches.

Researchers have been working on nature inspired algorithms with the aim to

increase the efficiency of achieving nearly optimal solution [19].

Conventionally white-box and black-box approaches have been used for test case

prioritization [20]. Black box approaches do not require the code therefore pre-

venting the need of source code availability. Conversely white box approaches
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increase the source code coverage and hence increases the early fault detection

[21]. The objective of existing prioritization techniques is to improve the fault

detection rate for which APFD metric is used. However, energy consumption is

the major concern in mobile applications [22]. Existing approaches focus on the

fault detection but do not cover energy consumption which is of major concern

in mobile applications. Similar to the conventional applications, mobile applica-

tions require functional correctness along with energy consumption. Therefore,

the major aim of the study is to propose an energy-aware prioritization approach

for Android applications.

1.3 Energy Bugs and Hotspots

Energy inefficiency is a state where malfunctioning applications may lead to inap-

propriate power states, such as energy greedy GPS/ background sensor updates,

non-idle power state in absence of user activity and so on. Moreover, these in-

efficiencies appear when the application does not effectively utilize the device re-

sources (i.e., not releasing resources like Wi-Fi/ GPS or expensive sensor updates)

eventually hampering the battery life of smart devices.

Energy inefficiencies in smartphone applications can be broadly classified into

energy hotspots and energy bugs described as:

Energy Hotspot: An energy hotspot can be elaborated as a scenario where appli-

cation causes the device to abnormally consume high amount of power even if the

resource utilization is very low.

Energy Bug: An energy bug can be described as a scenario where malfunctioning

application restricts the device to be in idle state even when there is no user

activity involved.

Table 1.1 shows the categories of energy bugs and energy hotspots that can

be found in an Android application. These energy bugs will be covered in our

proposed TCP technique.
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Table 1.1: Classification of Energy Bugs [23]

Category Energy Bug Energy Hotspot

Hardware
Resources

Resource Leak: Resources
(such as the WiFi) that are
acquired by an application
during execution must be
released before exiting or
else they continue to be in
a high-power state.

Suboptimal Resource Bind-
ing: Binding resources too
early or releasing them too
late causes them to be
in high-power state longer
than required.

Sleep-
State
transition
heuristics

Wakelock Bug: Wakelock is
a power management mech-
anism in Android through
which applications can indi-
cate that the device needs to
stay awake. However, im-
proper usage of Wakelocks
can cause the device to be
stuck in a high-power state
even after the application
has finished execution. This
situation is referred to as a
Wakelock bug.

Tail-Energy Hotspot: Net-
work components tend to
linger in a high-power state
for a short-period of time af-
ter the workload imposed on
them has completed. The
energy consumed by the
component between the pe-
riod of time when the work-
load is finished and the
component switches to the
sleep-state is referred to as
Tail Energy.

Background
Services

Vacuous Background Ser-
vices: In the scenario where
an application initiates a
service such as location up-
dates or sensor updates but
does not removes the ser-
vice explicitly before exit-
ing, the service keep on re-
porting data even though no
application needs it.

Expensive Background Ser-
vices: Background services
such as sensor updates can
be configured to operate
at different sampling rates.
Unnecessarily high sam-
pling rate may cause energy
hotspots and therefore
should be avoided.

Defective
Function-
ality

Immortality Bug: Buggy
applications may re-spawn
when they have been closed
by the user, thereby contin-
uing to consume energy.

Loop-Energy Hotspot: For
instance, a loop containing
network login code may be
executed repeatedly due to
reasons such as unreachable
server.
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Table 1.2: Occurrence Scenario of Energy Bugs in Source Code

Types Bug occurrence scenario

A-Bug Where any resource is ac-
quired only but not used or
released

AR-Bug Where any resource is ac-
quired and released but not
used

AU-Bug Where any resource is ac-
quired and used but not re-
leased

In this study, we only work with the code level energy bugs. Whereas the table

1.2 shows the usage scenarios showing how bugs occur in the source code.

The proposed approach will prioritize the test cases on the basis of energy bugs

where bug-prone path will be assigned higher priority as it will be able to detect

the energy critical code segments.

1.4 Purpose

Energy is the major resource in the smartphones however the mobile application

developers lack the objective information regarding the application behavior with

respect to the energy bugs [24]. Therefore, the proposed approach will focus on

identifying the energy critical paths (involving energy bug) which will be used as

coverage criteria for TCP.

1.5 Scope

The study aims to prioritize the test suite in order to detect the energy critical

code (i.e. code segments which may produce energy bugs) at early stages. For

prioritizing the test suite, it is assumed that the test suite, application’s source
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code and related coverage information (including statement coverage and energy

bug coverage) is available.

1.6 Problem Statement

Existing studies focus on code coverage criteria for performing regression testing on

Android applications and is used for prioritizing or minimizing the test suite. But

due to the increased usage of battery constrained devices, testing non-functional

properties, especially energy bugs coverage, is recently gaining substantial inter-

est. Therefore, energy bug coverage is the under-explored area in the domain of

regression testing of Android applications. While, traditionally used code coverage

metric is inadequate to provide energy bug coverage as it only uncovers function-

ality bugs. Considering code coverage criteria does not ensure the energy bug

coverage of the code. whereas in literature, energy based minimization techniques

are discussed which do not focus on the code coverage of the program.

1.7 Research Methodology

1. Initially, literature review has been done in order to find the most recent

and relevant regression testing techniques specially TCP used for testing

of Android applications. After studying various papers, we concluded that

traditional coverage criteria are not enough for testing energy related aspects

of smart devices. Therefore, the articles related to energy consumption in

the domain of Android applications have been studied. Most of the studies

focuses on method level coverage while using selective types of bugs.

2. To overcome the gap in the existing techniques, a new weight-based energy

aware criterion has been proposed in order to find the energy-prone paths

at early stages. The proposed test case prioritization approach calculates

the weight of test paths based on energy bug coverage and the statement

coverage.
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3. Approach will be implemented as follows:

(a) Firstly, the source code of AUT (Application Under Test), test suite,

its relative code coverage information and the test suite is assumed to

be available.

(b) Weight of each test path is calculated considering the type of energy

bug it contains as well as the statements it covers. We can variate

by giving more preference to any of the given criteria (elaborated in

Equation 2 Chapter 3).

(c) Based on the calculated weights the test paths will be added in the

prioritized test suite. The algorithm uses the additional strategy for

prioritizing the test suite.

(d) Then the proposed approach is then evaluated using the variants of

APFD metric.

4. After generating the prioritized test suite, the evaluation will be performed

using APFD-bug variant and statement variants (detailed explanation in

chapter 5).

1.8 Research Contribution

In this research work, we have presented test case prioritization approach that uses

energy bug and statement coverage as primary prioritization criteria.Previous TCP

techniques aim to reveal the functional bugs but the proposed approach is able to

uncover the functional bugs as well as the non-functional bugs (energy bug).

1.9 Thesis Structure

The thesis is organized into five different chapters where Chapter 1 describes the

introduction to the proposed approach and its objectives. Chapter 2 explains the
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literature review and presents the analysis on the existing techniques. Chapter

3 discusses the proposed methodology and the generic example explaining the

proposed solution. Chapter 4 describes the implementation details. Chapter

5 describes the experimental results and their comparison with other technique.

In the end Chapter 6 presents the conclusion and future work.



Chapter 2

Literature Review

Regression testing is a technique used for detecting the faults in software close to

the ending phase of development life cycle. This testing technique is required to

verify the additional functionalities of the system and to verify that previous sys-

tem has not been affected after incorporating the changes. Test suite is developed

in order to verify the system functionalities, therefore, its size tends to increase

with the evolution of software over time. This increase in the size of test suite

makes it expensive to execute in terms of time, effort and hence consumes around

80% of the whole budget. Due to the time, cost and resource constraints, it is

needed to make regression testing more efficient in detecting faults. For early fault

detection, regression testing has been categorized into three major sub-domains

that are test suite minimization, test case selection and test case prioritization

[25].

2.1 Test Case Prioritization

Test case prioritization reorganizes the test suite with the aim to increase the

early fault detection rate and provides maximum benefits to the testers. While

prioritizing the test suite, it is ensured that the high priority test cases should be

executed earlier in the testing process [26]. Prioritization does not eliminate any

11
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test case instead this approach uses a suitable metric to rank test cases in the test

suite.

Rothermel et al, [5] presented the formal definition of test case prioritization as:

Definition: Test Case Prioritization Problem

Given: A test suite, T; PT, the set of permutations of T and function f from PT

to the real numbers.

Problem: To find

T ′ ∈ PTsuchthat(∀T ′ ′)(T ′ ′ ∈ PT )(T ′ T ′)[f(T ′) ≥ f(T ′ ′)].

Here PT, is the set of all possible prioritization permutations (ordering) of test

suite T and f is the fitness function applied to yield award value for the ordering.

Several approaches for test suite prioritization exist in literature focusing on cover-

age criteria and prioritization algorithm. Likewise, energy aware approaches focus

on measuring and estimating energy consumption. Based on the existing studies

we have directed our research towards the coverage criteria-based test case pri-

oritization and then energy estimation for Android applications. Therefore, the

section is further subdivided into directions i.e., code-coverage based TCP and

energy consumption of Android application.

2.1.1 Code-Coverage Based TCP

The existing papers in the category of code-coverage based TCP are briefly ex-

plained as follows:

In 2013, W. sun [8] proposed multi-objective test case prioritization strategy comb-

ing event and statement coverage. For the empirical study two popular GUI appli-

cations have been used to evaluate the fault detection capability of two strategies

and reveals the inconsistencies between them.
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In 2014, D. Hao [27] presented unified test case prioritization approach that consti-

tutes both additional and total strategy. To evaluate the effectiveness of proposed

approach 28 Java and 40 C programs were considered. Results demonstrate that

a wide range of techniques derived using basic and extended models can be more

effective than total techniques and competitive with additional techniques.

The approach presented in [17] is the extension of approach presented in 2016 [28]

in which experimentation has been carried out on Java code having 12 lines. The

result in [17] shows that 8 out 12 lines were covered by this approach showing

89.2% coverage.

In 2017, S. Wang [29] presented the quality aware TCP approach which make

use of method and statement level code coverage. The proposed technique first

inspects fault-prone code then calculate the weight of the code units and prioritize

the test cases based on these weights. They have combined the dynamic method

coverage with the total strategy and evaluate the results. Empirical evaluation

has been conducted on 7 open-source Java applications (33 versions) shows that

the proposed approach performed better as compared to others.

In 2018, IyadAlazzam [30] presented a TCP approach based on method and state-

ment coverage aiming to increase the efficiency in error detection. Weight for

individual test cases are calculated using average statement and method coverage

for the system under test and then prioritize the test suite from high to low value

of weight. This approach has been experimented on a Java application having

212 lines and 48 methods. But the approach is not compared with any of the

traditional approaches.

In 2019, an empirical study has been conducted by N. M. Torres [31]. The focus

of the study is to evaluate the prioritization approaches based on method, branch

and coverage with APFD as well as with the m-spreading Metrix. Java programs

have been used for evaluating the results showing that additional strategies per-

form better in terms of APFD value while techniques that follows total strategies

performed better considering M-spreading values.
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In 2019, T. Afzal et al. [32] presented path complexity and branch coverage-based

TCP approach assuming that complex code is more likely to contain faults. The

experiment has been carried out on three different Java programs and results has

been compared with the traditional branch coverage criterion. The results show

that proposed approach outperforms existing branch coverage-based approach in

terms of APFD (Average Percentage of Faults Detected) up to 18% on average.

In 2018, A. Ammar et al. [33] presented weight-based TCP criteria with the

objective to generate unique value for each test case. The proposed approach uses

code coverage for prioritizing the test case in which weight is calculated based

on five different criteria that are: statement, path, function, branch and fault

coverage.

In case multiple weight of multiple test cases will be same then UniVal (unique

Value) is calculate based on the type that whether test cases cover the same seg-

ments or they cover the different code segments. After adjusting the weights of test

cases according to the type of code they cover, these test cases are then prioritized

in descending order of their new weights. This proposed algorithm is evaluated on

three different Java programs showing that enhanced weighted method performed

well in all four code-coverage criteria except in functional coverage. [33]

In 2020, R. Huang et al. [34] proposed a new code combination coverage crite-

rion for test case prioritization. This code coverage criteria combines the concepts

of code coverage with combination coverage. An empirical study has been con-

ducted on four different Java programs (14 versions) and five Unix applications

(30 versions). To compute the effectiveness of proposed approach they presented

a comparison of proposed approach with traditionally followed regression testing

approaches: adaptive random, total, additional and search-based techniques.

In 2020, another statement-based defect prediction approach for TCP has been

presented by Y. Shao et al.g [35]. There proposed approach first predicts the

defects on code level and then use that information for prioritizing the test suite.

The experimentation has been carried out on four different open-source datasets

and results have been evaluated using APFD matrix.
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2.1.2 Energy Based TCP

The gathered literature shows that the focus is on energy consumption and energy

optimization therefore the code-based energy consumption can be further divided

into two categories: energy optimization and energy consumption in smartphone

applications.

2.1.2.1 Energy Optimization

In 2013, L. Ding et al [36] proposed a new TSM approach that encodes mini-

mization problem as integer linear programming problem. The approach has been

evaluated on two Android applications showing that while maintaining high code

coverage energy consumption has been reduced to on average of 5 % to 48 %.

In 2014, D. Li et al [37] presented an extension to the previous technique [30] in a

way to allow testers to generate energy efficient reduced test suite. The extended

approach selects test cases based on software test requirements and their energy

consumption. Evaluation result shows that the approach produces 95% energy

efficient test suite in less than a second.

In 2016, R. Jabbarvand et al [38] presented energy aware TSM approach aims to

reduce the size of test suite while effectively testing the energy properties of An-

droid application. The approach calculates the eCoverage value of test cases based

on energy greedy methods of the program. The proposed approach is then evalu-

ated using 15 different applications using Integer linear programming and greedy

programming techniques. The result shows that proposed approach reduced on

average 84% in the case of IP and 81% in the case of Greedy programming.

In 2018, M. Linares-Vasquez et al [39] presents a GUI based energy optimiza-

tion technique which produces color solutions optimizing energy consumption and

contrast while using consistent colors with respect to the original color palette.

Empirical evaluation shows that some of the solutions generated by GEMMA are

able to achieve a good energy reduction while being acceptable by end-users.
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2.1.2.2 Energy Consumption

Application’s code level energy estimation-based research papers have been in-

cluded to gather information about the energy estimation and consumption of

various source code elements.

In 2013, proposed approach [40] focused on calculating the energy consumption

at the source code level. This approach calculates the energy consumption by

using combination of hardware-based power measurement and statistical modeling

techniques. In 2014, [36] evaluated its proposed approach presented in [40] on 405

real world applications showing that on average applications spend 61% of their

energy in idle states, network is the most energy consuming component, and only

a few APIs dominate non-idle energy consumption.

In 2017, M. Wan et al [41] present technique to detect display related energy

hotspots. Energy hotspots are the user interfaces of smartphone applications

whose energy consumption is more than optimal. Evaluation shows that the pre-

sented technique can predict display energy consumption to within 14% of the

ground truth and accurately rank display energy hotspots. Another approach pre-

sented in year 2019 [42] presented method level energy consumption and extracts

the relevant energy consumption and execution traces. In 2020, M. Couto et al

[43] studied application-level refactoring approach. The proposed work provides

several findings that can guide developers in improving the energy efficiency of

their code.

2.2 Analysis and Comparison

The primary criteria for selecting the test papers are test case prioritization. As

the research area is inclined towards the testing of Android applications therefore

the papers considering

Android applications for experimentation are considered. Apart from that the

studies performing experimentation on java-based programs as considered as well.
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Table 2.1 shows the comparisons of the code-based coverage criteria for test suite

prioritization in the domain of Android applications.

After considering the code-based prioritization approaches, the papers relevant

to the energy-based coverage has been included. As there is no such paper that

focuses on energy aware TCP therefore, the other optimization related papers

have been included as well. Table 2.2 shows the comparisons of the energy opti-

mization techniques mentioned in literature. while Application’s code level energy

estimation-based research papers have been included to information about the en-

ergy estimation and consumption of various source code elements which are not

directly a part of literature review.

Table 2.1: Literature Review: Code Based TCP

Ref
No

Coverage
Criteria

Evaluation
Parameters

Weakness Result

[8] Statement APFD Presented evalu-
ation on 2 GUI
applications for
prioritization but
does not considers
code level energy
bugs

Multi-objective
strategy performs
better than two
single strategies

[27] Statement &
Method

APFD More complex
methods are more
fault prone, which
may be difficult to
detect. Coverage
both elements still
not ensure coverage
of code level energy
bugs

Techniques derived
using basic and
extended mod-
els can be more
effective than
total techniques
& competitive
with additional
techniques

[28] Functional
Statement
Branch Fault
&Path

APFcdC
APFfnC
APFptC
APFbrC
APFflC

Focused on code
level faults but does
not considers possi-
ble energy bugs at
code level

Enhanced method
not only prioritize
test cases but also
recorded higher
percentage of cov-
erage for function
& code coverage
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Ref
No

Coverage
Criteria

Evaluation
Parameters

Weakness Result

[29] Method &
Statement

APFD Aims to detect
fault-prone source
code only. Energy
based faults are
not considered

Evaluation shows
that QTEP could
improve existing
coverage-based
TCP techniques
for both regression
test cases and all
test cases

[30] Method &
LOC

N/A Uses total strategy
and does not deals
with energy based
prioritization

No comparison
done so no results
are reported

[31] Method
Branch &
Statement

APFD & M-
spreading

The technique
cannot be applied
to the programs
having no previous
records. Focus only
on source code
based faults

Results show that
additional strate-
gies perform better
in terms of APFD
value while tech-
niques that follow
total strategies
performed bet-
ter considering
M-spreading values

[32] Path com-
plexity &
Branch

APFD Code based energy
leakage is not ana-
lyzed

The results show
that proposed
approach outper-
forms existing
branch coverage-
based approach in
terms of APFD
(Average Per-
centage of Faults
Detected) up to
18% on average

[33] Functional
Statement
Branch Fault
&Path

APFstC
APFbrC
APFpaC
APFfnC
APFD

Does not covers
possible bugs w.r.t
energy leakage at
any of the selected
granularity level

Enhanced weighted
method per-
forms better than
weighted method.
But both show
same result in
APfnC value
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Ref
No

Coverage
Criteria

Evaluation
Parameters

Weakness Result

[34] Statement
Branch &
Method

APFD
APFDC

Energy leakage pat-
terns are not un-
covered by the pre-
sented approach

CCCP gives better
results as compared
to others. CCCP
prioritization costs
are found to be
comparable to
the additional
test prioritization
technique

[35] Statement APFD Presented state-
ment level defect
prediction model,
which is unable
to uncover the
possible statement
level energy bugs

In the test case pri-
oritization meth-
ods, the APFD
performance of the
additional strategy
is preferable to
max strategy and
total strategy

Table 2.2: Literature Review: Energy Optimization

Ref
No

Coverage
Criteria

Evaluation
Parameters

Weakness Result

[37] Energy con-
sumption

Minimization
time Percent-
age reduction

No explicit identi-
fication of energy
bugs which they
are handling. ILP
based approach for
minimizing test
suite.

Evaluation result
shows that the
approach produces
95% energy effi-
cient test suite in
less than a second

[36] Energy Con-
sumption

Reduction
percentage

No explicit identi-
fication of energy
bugs which they
are handling. ILP
based approach for
minimizing test
suite

Results show that
while maintain-
ing high code
coverage energy
consumption has
been reduced to on
average of 5% to 48
%
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Ref
No

Coverage
Criteria

Evaluation
Parameters

Weakness Result

[38] Energy-aware
coverage

Reduction
Percentage
Mutation
analysis

Method level cover-
age. All categories
of energy bugs are
not considered. Ex-
ecutes the test case
to calculate cover-
age which increase
the cost. ILP
based approach is
not valid for large
applications.

Result shows that
the IP shows better
results than greedy
programming while
maintaining test
suite quality to
reveal the great
majority of energy
bugs

[39] GUI coverage
(screen)

Battery
percentage
improvement

Focus only on GUI
(coloring) based en-
ergy consumption.
No code-based
coverage criterion
is used. Does
not covers energy
bugs/hotspots.

Empirical eval-
uation showed
that some of the
solutions generated
by GEMMA are
able to achieve
a good energy
reduction while
being acceptable
by end-users

From the above analysis, it has been shown that the energy-based test case pri-

oritization is the least discussed domain. Most of the studies till now focuses on

the energy optimization or energy estimation techniques for the Android applica-

tion. Apart from that, code level energy bugs are not considered while performing

energy optimization or calculating the energy estimation.
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Proposed Approach

In the literature survey, it has been identified that energy consumption is the least

discussed topic in the domain of regression testing. After studying various TCP

techniques, it has been concluded that these techniques focus on either white box or

black box coverage based prioritization. While energy-inefficiency related studies

focused on energy-based optimization or consumption at the coarse-grained level.

Most of the energy aware test suite optimization techniques either execute the

test cases to calculate coverage which increases the cost or uses the ILP approach

which is not suitable for large applications.

To overcome the gap identified in the existing techniques, we proposed an energy

aware TCP technique which identifies bug-prone paths and considers energy bug

coverage as the major criterion for prioritizing the test cases. The path containing

energy bug will be considered as the bug-prone path.

Considering these bug-prone paths, a new algorithm has been developed which uses

the energy bug weight and statement coverage criteria to prioritize the test suite.

Test paths, statement and bug coverage information are passed as input to the

algorithm. The proposed algorithm uses both statement and bug coverage criteria

simultaneously to compute the weight of the test paths. Then the algorithm

generates prioritized list of test paths as the output.

21
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3.1 Proposed Solution

We have proposed TCP technique that uses energy bug and statement coverage

criteria for prioritizing the test suite. Figure 3.1 shows the proposed methodology

for energy aware test suite prioritization. Test path’s weight calculation process

is considered as a sub-process of the prioritization algorithm. The prioritization

algorithm uses the test suite, code coverage and energy bug coverage as input and

returns the prioritized list of test cases. The output is then used in the evaluation

process which takes fault coverage information as input.

Figure 3.1: Context Diagram of the Proposed Approach

The prioritization algorithm takes test suite and coverage information and calcu-

lates test paths weights. The weight of entire test path is calculated using the

following steps:

• Test path’s weight calculation process returns the energy bug weight of test

path (which is explained further in section 3.1.1.1)
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• Energy bug weights are then normalized in the range of 0 to 1 using the min

max normalization [44].

• Parallelly statement coverage information of each test path is normalized in

the similar range (i.e., 0 to 1).

• The whole test path’s weight is calculated using the equation (3.1).

The test path having the maximum weight will be selected. As proposed algorithm

follows the additional strategy, therefore, the residual coverage is calculated and

then the process continues till all the test cases are prioritized. While, figure 3.2

depicts the complete flow of the prioritization algorithm.

Figure 3.2: Flowchart of Prioritization Algorithm
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The proposed approach can be applied during the maintenance testing phase of

software development life cycle. It consists of the following three steps:

3.1.1 Prioritization Algorithm

The prioritization algorithm considers the energy bug weight and the statement

coverage for prioritizing the test paths. The algorithm takes set of test paths, their

coverage (energy bug and statement coverage) and resource information as input

and generates the prioritized list of test paths. Energy-bug weight calculation is

considered as the sub-part of the prioritization algorithm, using which the test

path’s weight is calculated.

3.1.1.1 Test Path’s Weight Calculation

Weight Calculation phase takes the coverage information and the test paths as

input and then calculates the respective weight of each test path. Test paths have

been generated using Control Flow Graph (CFG). The source code of Android

application has been taken as input using which the CFG is generated.

The CFG has been generated using the Auto-Tester tool [45]. It is a Java based

tool used to generate the CFG from the source code. Once the CFG is generated,

test paths are selected using the statement coverage criterion.

For elaborating the proposed methodology an example has been selected. Using

the available source code, AutoTester tool generates the CFG as shown in the

figure 3.3. The tool also generates test paths based on node coverage criteria

where node represents the source code statements.

From the CFG, test paths have been created using one of the structural graph

coverage criteria that is node coverage criteria. Auto tester tool also provides an

option of generating test paths using different structural coverage criteria. Hence,

the test paths are created using the auto tester tool by selecting the node coverage

criteria is presented in table 3.1.
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Figure 3.3: Example CFG

Table 3.1: Test Paths from Example CFG

Test Path
No

Test Paths

TP1 1, 3, 5, 6, 7, 11, 15, 16, 17, 18, 19, 20, 21, 22

TP2 1, 3, 5, 6, 7, 11, 12, 13, 14, 19, 20, 21, 22

TP3 1, 3, 5, 6, 7, 8, 9, 10, 19, 20, 21, 22

TP4 1, 3, 5, 21, 22

TP5 1, 2, 3, 5, 21, 22



Proposed Approach 26

After creating CFG and the test paths, the nodes of CFG are then annotated

with the acquisition, usage or release of the resources. The nodes of the CFG

are annotated by statically analyzing the code. In the given CFG, two types of

resources have been used that are wake lock and GPS. The Nodes in the example

CFG is annotated and defined as follows:

• Wake lock has been acquired at Node 9 and 13

• Wake lock has been used at Node 8 and 12

• GPS has been acquired at Node 17

Bugs are identified and then the weight of each test path has been calculated using

the following formula.

For a given set of test paths tpi = tp1 , tp2 , tp3 . . . ... tpn , weight of each path

will be calculated based on bug type (as mentioned in section 3)

TP-BugWeight [tpi]=
∑n

r=1 {
∑3

j=1 [ cover(tpi, bj ) ∗ bwj ] ∗ φr }

(3.1)

Where;

n is the number of resources a test path covers.

i represents the number of test paths, j depicts the energy bug occurrence scenario

and r is the number of resources a test path have.

tpi are the ith test path among the test suite and bj is the bug type tpi covers.

cover(tpi, bj ) is 1 if it covers energy bugs bj otherwise 0. bj is the weight

dedicated to bugs w.r.t to its occurrence type.

bwj is the weight dedicated to bugs w.r.t to its occurrence type.
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Here φr represents the weight assigned to the resource being used w.r.t to its

energy consumption.

Scalar weight value is assigned to each type of bug as represented in Table 3.2.

As A-Bug is consider as the severe bug (as resource is only acquired) therefore

highest weight is assigned to it (i.e. 3). AU-Bug is less severe as compared to the

A-Bug therefor weight is 2 for this type of bug. while AR-Bug is the bug with

least severity so 1 weight has been assigned to it.

Table 3.2: Representing assigned weight w.r.t energy bug occurrence

Types Bug occurrence scenario Weight
(bw)

A-Bug Where any resource is ac-
quired only but not used or
released

3

AR-Bug Where any resource is ac-
quired and released but not
used

1

AU-Bug Where any resource is ac-
quired and used but not re-
leased

2

These resource weights are calculated using the data collected on the basis of power

consumption (in mW) of the API being used in the source code [46]. Table 3.3

shows the values assigned to the resource, showing that Wakelock consumes the

maximum power.

Table 3.3: Resource Weights W.r.t Power Consumption

Sr.
No

Resource
Type

Energy
Consump-
tion

Weight
φ

i Bluetooth 211 mW 1

ii GPS 408 mW 1.93 ≈ 2
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Sr.
No

Resource
Type

Energy
Consump-
tion

Weight
φ

iii Wi-Fi 483 mW 2.3

iv Wake Lock Between 500
to 2000mW

3

A test path, whose energy bug weight needs to be calculated, is passed to the

weight calculation function. Using the formula mentioned in equation (3.1) , the

function computes the weight of each test path.

Algorithm 1 represents the algorithm used to calculate the energy bug weight for

each test path.

Algorithm 1 Energy Bug Weight Calculation(t)

Input:

• Test Path t

• |r|: Integer value representing how many types of resource bugs a test path
contains

• b - cov: Coverage vector such that for each test path t ∈ T, b - cov(t) the
set of energy bugs covered by executing P against t

Output:
Weight of the respective test path t
Declare:
TPWeight: weight of test path
TP1[]: temporary array for storing weights

1: begin
2: if | r | > 1 then
3: for j ← 1:n do
4: for i ← 1:3 do
5: TP1[t] ← (cover (t, bi) * bwi) * φj

6: TPWeight ← TPWeight + TP1[t]

7: else
8: for i ← 1:3 do
9: TPWeight ← (cover (t, bi) * bwi) * φi

10: return TPWeight
11: end
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The algorithm checks for the number of resources a test path has. If the function

covers only one resource than the algorithm checks for its bug type w.r.t to that

resource and the energy bug weight is calculated. In case if the test path cov-

ers multiple resources than the energy bug weight w.r.t to each resource type is

calculated and then summed up to form the weight of entire test path.

Continuing to the given example the energy bugs have been identified using which

the weight w.r.t to bugs has been calculated. Table 3.4 shows the energy bug

weight calculated for each test paths.

Table 3.4: Energy-Bug Coverage Details:Example

Test
Path
No

Statement
Coverage

Identified
Bug

No of
Bugs

Resource
Used

Bug
Weight

TP1 1, 3, 5, 6, 7, 11,
15, 16, 17, 18,
19, 20, 21, 22

AcqBug 1 GPS 6

TP2 1, 3, 5, 6, 7, 11,
12, 13, 14, 19,
20, 21, 22

AcqBug 1 Wake Lock 12

TP3 1, 3, 5, 6, 7, 8,
9, 10, 11, 19, 20,
21, 22

AcqBug 1 Wake Lock 12

TP4 1, 3, 4, 5, 21, 22 No Bug 0 – 0

TP5 1, 2, 3, 5, 21, 22 No Bug 0 – 0

The complete weight of a test path is calculated by summing the normalized energy

bug weight and normalized statement coverage as follows:

TPWeight [tpi] = (α) NBW [tpi] + (1 - α) NSC [tpi]

(3.2)
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In equation (3.2) , α is a scalar variable which is used to give importance to a

specific value. In the proposed algorithm, initially α have the value of 0.5 which

depicts that equal importance will be given to the energy bug weight and statement

coverage. While these values can be altered in order to give more importance to

any of the selected criteria.

The proposed algorithm uses the additional strategy to compute the weight of

test path. Additional strategy states that the energy bug or statements covered

by a test case should not be used in the weight calculations of other test paths.

Test path with the highest weight will be selected. After selecting a test path, the

weight of the remaining test paths will be calculated again and hence the process

continues. The proposed algorithm following the additional strategy is elaborated

in the algorithm 2.

Algorithm 2 Prioritization Algorithm
Input:
T: Set of test paths of program P
StatementCoverage: Set of statements in P covered by all test paths in T
BugCoverage: Set of energy bugs in P covered by all test paths in T’
s-cov: Coverage vector such that for each test path t ∈ T, s-cov(t) is the set of
statements covered by executing P against t
b-cov: Coverage vector such that for each test path t ∈ T, b-cov (t) the set of
energy bugs covered by executing P against t

Output:
PrT: array of sequenced test path such that

• Each test PrT belongs to T

• Each test in T appears exactly once in PrT

Declare:
TPWeight: weight of test path
TP1[]: temporary array for storing weights

1: begin
2: X’ ← T
3: for ti ∈ X’ ← 1:n do
4: W [ti] ← BugWeight(ti)
5: NW [ti] ← Normalization (W (ti))
6: NSC [ti] ← Normalization (| s-cov(ti) |)
7: TPW [ti] ← (α) NW [ti] + (1- α) NSC [ti]



Proposed Approach 31

8: while X’ 6= φ, BugCoverage6= φ and StatementCoverage 6= φ do
9: Find t ∈ X’ Such that | TPW[t] | ≥ | TPW[u] | for all u ∈ X’, u 6= t

10: Set PrT.append (t) and X’ ← X’ \{ t }
11: StatementCoverage ← StatementCoverage \| s-cov(t) |
12: BugCoverage ← BugCoverage \| b-cov(t) |
13: for ti ∈ X’← 1:n do
14: for ti ∈ PrT← 1:n do
15: if b-cov (ti) ! = BugCoverage then
16: b-cov (ti)←0

17: if s-cov (i) ! = StatementCoverage then
18: s-cov (ti)←0

19: W [ti] ← BugWeight(ti)
20: NW [ti] ← Normalization (W (ti))
21: NSC [ti] ← Normalization (| s-cov (ti) |)
22: TPW [ti] ← (α) NW [ti] + (1- α) NSC [ti]

23: Return PrT
24: end

The weight of the test paths (for the selected example) is expressed in table 3.5.

The table represents bug weight calculated in table 3.4 and respective statement

coverage. Total test path weight is then calculated based on the normalized weights

of energy bugs and statement coverage.

Table 3.5: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage-Step I:Example

Test
Path
No

Bug
Weight

Normalized
Bug Weight

Statement
Coverage

Normalized
Statement
Coverage

Total
Weight

TP1 6 0.5 14 1 0.75

TP2 12 1 13 0.875 0.93

TP3 12 1 12 0.75 0.87

TP4 0 0 6 0 0

TP5 0 0 6 0 0

Here the weight of the test path <TP2> is maximum therefore TP2 is selected as

the first test in the prioritization order. When any test path is selected, the algo-

rithm updates the coverage information of the test paths following the additional
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strategy and again calculates the individual weight of test paths.

After selecting a test path, the coverage information is re-calculated. Using the

additional coverage information the test path weight is calculated again as shown

in table 3.6.

Table 3.6: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage-Step II:Example

Test
Path
No

Bug
Weight

Normalized
Bug Weight

Additional
State-
ment
Coverage

Normalized
Statement
Coverage

Total
Weight

TP1 6 1 4 1 1

TP3 0 0 3 0.66 0.33

TP4 0 0 1 0 0

TP5 0 0 1 0 0

<TP1> is selected, as it has the highest weight value among all and is placed

in the prioritization list after TP1. As the coverage information and test paths

are not null therefore recalculate the test path weights based on the additional

coverage information.

Table 3.7: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage-Step III:Example

Test
Path
No

Bug
Weight

Normalized
Bug Weight

Additional
Statement
Coverage

Normalized
Statement
Coverage

Total
Weight

TP3 0 0 3 1 0.5

TP4 0 0 1 0 0

TP5 0 0 1 0 0
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<TP3> is selected as it has the highest value as shown in 3.7. The whole pro-

cess continues until all the test paths are prioritized and all the energy bugs and

statements are covered.

Hence the prioritized list has been generated which is { TP2, TP1, TP3, TP4,

TP5 }.

3.1.2 Evaluation

Average Percentage of Fault Detection (APFD) is used to evaluate the effectiveness

of prioritization techniques. APFD is the measure of how early faults are detected

in the testing process by the test suite [5]. Following formula is used to calculate

the APFD:

APFD = 1− TF1 + TF2 + TF3 + .....+ TFn

nm
+

1

2n
(3.3)

Where T is the test suite containing n test cases and F is the set of m faults

revealed by T. For ordering T’, TFi is the order of the first test case that reveals

the ith fault Fi. Further details are mentioned in chapter 5 (section 5.3).



Chapter 4

Implementation

This chapter discusses the implementation details of proposed algorithm. The

proposed algorithm has been implemented using the Eclipse software in Java lan-

guage.

4.1 Implementation Details

The class diagram of proposed algorithm is shown in the figure 4.1. The code

includes three classes. Classes are designed to initialize the set of test paths and

coverage information, calculating the energy bug weights and then create a list of

prioritized test paths following the proposed algorithm.

The classes used in the class diagram and their relations are elaborated as follows.

• DataRetrieval class: This class initializes the set of test paths and cov-

erage information which is then used in the prioritization class. This class

also has normalization function which is used to normalize the data values

passed to it.

• WeightClass: This class calculates the energy bug weight of each test path

based on the resource and the related energy bugs it contain.

34



Implementation 35

Figure 4.1: Class Diagram of Proposed Algorithm

• PrioritizationClass: This class implements the proposed prioritization al-

gorithm on the set of test paths and generates the prioritized list.

The prioritization class uses the values initialized in the GetValues class, therefore,

this class inherits the GetValues class in order to access the data members and

member functions. While the prioritization algorithm involves calculating the

energy bug weights of every test path in every iteration therefore the WeightClass is

considered as a sub-part of the prioritization class. Hence composition relationship

exists among both the classes.

The methods involved in the above defined classes are discussed below:

• SetValues (): This function initializes the data members of the class on

user defined inputs which is further used in the prioritization method.

• Normalization (): Weight of the test path is calculated using the energy

bug weight and the statement coverage information. Both of these values are

normalized on the scale of 0 to 1 using the min-max normalization technique.

This function is used to generate the normalized values.
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• BugWeight (): This function takes test path and its related energy bug

coverage information and returns the weight of the respective test path. The

function calculates the energy bug weights of the test path using the equation

(3.1) (mentioned in chapter 3).

• Prioritization (): This method performs the proposed prioritization al-

gorithm which makes use of the other methods for generating the prioritized

test cases.

Initially, the data members inside the GetValues are initialized using the SetValue

(). After initializing the values, Prioritization () starts execution using the

initialized values. BugWeight () returns the energy bug weight of each test path

which is then normalized using the Normalization (). Once the test path has

been selected, the process re -computes the energy bug weights using the residual

values. The process of normalization occurs again in order to compute weight of

remaining test paths. This process continues until the whole test suite is prioritized

and every energy bug and statement is covered.

4.2 Usage Details

The proposed algorithm takes test paths, the total coverage information and the

energy bug and statement coverage of the test paths from the file in DataRetrieval

class.

Figure 4.2 shows the input file format for the example program, in which the

coverage information is input in comma (,) separated way. While the test paths

energy bug and statement coverage is added in separate lines.

Figure 4.3 shows the input format for statement coverage of test paths where each

line shows the coverage of a test path. whereas in a line, statements are separated

by commas. In the code this file data is extracted and stored in a two-dimensional

array.
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Figure 4.2: File Format: Input Screen-I

Figure 4.3: File Format: Input Screen-II

Considering the test paths coverage information, the algorithm calculates the en-

ergy bug weight. For computing the final weight of the test paths, the proposed

algorithm uses energy bug weight and statement coverage of that test path. Among

all the test paths, the path with the maximum weight is selected. While calculat-

ing the weight of entire test path, the proposed algorithm gives equal weight-age

to the energy bug coverage and statement coverage.

Once the test path is selected, the algorithm updates the total coverage information

and then re-calculates the weights of test paths. This process continues until all

the test paths are prioritized. The algorithm generates the prioritized list of the

test paths on the console shown in the figure 4.4.

Figure 4.4: Console Output Screen
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4.3 Mapping Example

For elaborating the implementation details, we have chosen hypothetical example

whose input and output is explained in steps below.

4.3.1 Input Details

Initially, coverage information is input using the text files (format as mentioned

in section 4.2). The coverage information includes number of test paths, total

statement coverage, total bug coverage, test path’s statement and bug coverage.

Figure 4.5 shows the file format for total statement coverage an algorithm needs

to check. The file should have one row and all the statements should be written in

comma (,) separated format. As the algorithm follows the node coverage criterion

therefore, the statements are considered as the nodes of CFG.

Figure 4.5: File Format: Total Statement Coverage

The total energy bug coverage information ‘s file format is shown in figure 4.6.

The file shows the data regarding the five different resource types starting from

Bluetooth till WakeLock (see table 3.2). Data should be added in a single row but

have four different values representing the total bugs w.r.t each resource type.

Figure 4.6: File Format: Total Energy Bug Coverage

Now the next step is to input the coverage information for each test path. Energy

bug coverage and statement coverage data of a test path are inputted using two
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separate files. Figure 4.7 and 4.8 represents the test paths energy bug coverage

and statement coverage respectively.

Figure 4.7: File Format: Test Path Energy Bug Coverage

Figure 4.8: File Format: Test Path Statement Coverage

Each row represents the test path and data separated by commas represents the

coverage information of that test path. Here in figure 4.7, test path 1 and 5 covers

no energy bug, test path 2 covers a GPS bug of type A-Bug, test path 3 covers the

same bug as that of test path 2, test path 4 covers wake lock bug of type A-Bug.

Here the number represents the bug types as discussed in table 1.2 (chapter 1).

4.3.2 Output Details

According to the prioritization algorithm (defined in chapter 3), energy bug weight

for each test path is calculated and normalized in the range of 0-1. After-wards

using the normalized statement coverage, the total weight of a test path is calcu-

lated. Then the test path with the highest weight has been assigned the highest

priority among all.

Figure 4.9 shows the initial test path’s total weight and the selection of test path

among the five test paths. These weights are calculated based on the algorithm

explained in the chapter 3. Using the statement and the energy bug coverage

weights, the weight of the test path is calculated which is further used for priori-

tization.
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Figure 4.9: Output: Prioritized List-I

In the above figure the test path 2 has the highest weight therefore, TP2 is selected

and added to the list. As the algorithm follows the additional prioritization strat-

egy so, the residual coverage of each test path is calculated. Based on the residual

coverage information the total weight of the remaining test paths are re-calculated.

Test Path with the highest weight is then appended to the prioritization list. This

process continues until each test path is added to the prioritization list and all the

energy bugs and statements are covered.

Figure 4.10, shows the selection of next test path w.r.t to the total weight.

Figure 4.10: Output: Prioritized List-II

As the weight of TP4 is the highest so, it is appended to the priority list. As the

algorithm follows the additional approach, therefore, next weights are calculated

based on additional coverage information.

After selecting the test path 4, the selection of next test path (i.e. test path 1) is

based on its weight which is shown in figure 4.11.
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Figure 4.11: Output: Prioritized List-III

Figure 4.12 and 4.13 shows the selection of next test paths of prioritized list.

Figure 4.12: Output: Prioritized List-IV

Figure 4.13: Output: Prioritized List-V

At the end of figure 4.13, the prioritized test suite is displayed and the process

terminates here.



Chapter 5

Results and Discussion

This chapter describes the results of the experiments done on different subject

programs. For the purpose of evaluating the proposed prioritization algorithm, 10

different Android applications have been selected. These applications are selected

from the studies exists in literature. The source code of these applications has

been downloaded from [47].

The proposed prioritization technique works on the fine-grained level (i.e., State-

ment level). We have generated the Control Flow Graphs of the functions where

each node in the graph represents the line of code inside the function. Test paths

of the CFG are then generated by applying the node coverage criterion. The node

coverage criterion is the graph coverage criteria which covers all the nodes of the

graph. These test paths represent the execution sequence of the statements inside

the function. We have selected those functions in which any resource has been

acquired, used or released at statement level.

Whenever any resource is acquired in the function it is assumed that the resource

will be properly released after using it. If the developer acquires a resource in

its code but does not release it at the end, then energy bug arises. Any path

containing the energy bug is considered as bug-prone path. From the available

test paths, the bug-prone paths are identified and their energy bug weights have

been calculated.

42
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Test path’s weights are calculated using the additional strategy based on energy

bug weight and the statement coverage. Using these weights, the prioritized list

of the test paths is generated.

5.1 Subject Programs

For comparing our proposed approach, we have to choose the paper which covers

energy bugs in Android applications therefore, the most relevant paper ‘energy

aware test-suite minimization’ is selected. Out of 15 applications discussed in

the paper [38], only 6 applications are relevant to our proposed approach. As

our approach consider only five resource types that are commonly used in the

Android applications (explained in table 3.3) so, those applications which do not

utilize these resources are considered as irrelevant to our approach. Other four

applications are selected randomly from the literature.

For evaluating the proposed technique, we have used 10 different open-source

Android applications, discussed as follows:

5.1.1 AndroidRun

AndroidRun is an assistance application for runners and bikers. It provides the

functionality of calculating distance, instant speed and the average speed. This

application is able to log all the data along with the location information.

The source code of this application can be downloaded from [48].

5.1.2 Jamendo

Jamendo is Android based media player application. This application provides its

user to play any song, at any time, on any device, without any interruptions or

limitations. This application uses Wi-Fi and Wake lock resources.

The source code of this application can be downloaded from [49].
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5.1.3 OpenCamera

Open Camera is an Open-Source Camera app for Android smartphones. This is

multi-functional camera-based application. This application provides additional

functionality of GPS location tagging (geotagging) of photos and video.

The source code of this application can be downloaded from [50].

5.1.4 A2DPVolume

A2DPVolume is the automatic media volume adjuster application. This adjusts

the volume on connection and resets it after disconnection. The application is

primarily intended for the vehicles Bluetooth system. This application keeps track

of the location using which exiting car mode can also be enabled when person leaves

the car.

The source code of this application can be downloaded from [51].

5.1.5 Apollo

Apollo is the java-based library which is used for defining service routes and man-

ages request/reply handlers. Apollo is used at Spotify when writing microservices.

Apollo includes modules such as an HTTP server and a URI routing system, mak-

ing it trivial to implement restful API services. This application uses wake lock.

The source code of this application can be downloaded from [52].

5.1.6 Andromatic

Andromatic is the java based Android application to automate the actions based

on user-defined triggers. This application uses Android location service.

The source code of this application can be downloaded from [53].
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5.1.7 K9Mail

K9Mail is an open-source email platform for Android users. This application

support multiple email accounts based on POP3, IMAP and pushIMAP. K9Mail

also have encryption mechanism embedded in order to provide secure data transfer.

The source code of this application can be downloaded from [54].

5.1.8 MyTracks

Mytracks is an open-source GPS based location tracking application. This appli-

cation provides the option of inserting image-based photo markers.

The source code of this application can be downloaded from [55].

5.1.9 Find3

Find3 application allows to performs constant scans for Bluetooth and WiFi signals

and levels that can be associated with certain locations in your home.

It is an open-source application that can be downloaded from [56].

5.1.10 WiFiGPSLocation

WiFiGPSLocation is an Android service to simplify duty-cycling of the GPS re-

ceiver when a user is not mobile. The WiFiGPSLocation application runs as an

Android Service on the phone.

The source code of this application can be downloaded from [57].

5.1.11 Features of Subject Program

The table 5.1 describes the detailed features of the applications used for the

experiment.
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Table 5.1: TCP Resource, CFG Test Paths and Bug-prone paths in each
Android applications

Applications Lines of Code Resource
Used

CFG Test
Paths

Bug-Prone
Paths

AndroinRun 1021 GPS 9 7

Jamendo 8709 Wi-Fi 5 4

Open Camera 15,064 GPS 6 6

A2DP volume 6,670 Wi-Fi, GPS,
Bluetooth

25 23

Apollo 20,520 Wake lock 8 5

Andromatic 2,156 GPS 5 5

K9 Mail 71,816 Wake lock 4 4

MyTracks 35,039 GPS,
GoogleMap

5 3

Find3 14,819 Wake lock,
Wi-Fi, GPS

9 7

WiFiGPS Lo-
cation

19,293 Wake lock,
Wi-Fi, GPS

22 12

Figure 5.1 represents the resource usage in subject programs, showing that GPS

is the mostly used resource showing that 7 out of 10 applications used GPS re-

source. Wi-Fi is the second most used resource in the selected applications. While

Bluetooth and the GoogleMaps API is the least used resource.

5.2 Prioritization Example Mapping on Android-

Run Application

AndroidRun is an assistance application for runners and bikers. It provides the

functionality of calculating distance, instant speed and the average speed using

GPS service. Two functions from this application is selected to illustrates the

proposed algorithm.
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Figure 5.1: Resource Usage in Subject Programs

5.2.1 onCreate():AndroidRun Application

By statically analyzing the source code of the selected AndroidRun application,

onCreate function is considered which uses GPS resource.

Firstly, the CFG of the selected Function has been created using AutoTester tool

[45]. The figure 5.2 shows the CFG generated using the tool.

After generating the CFG, test path will be generated using the same tool by

applying one of the graph coverage criteria which is node coverage criterion. Figure

5.3 shows the test paths generated from the CFG.

OnCreate function of AndroidRun is statically analyzed and the nodes are anno-

tated as follows:

• GPS is acquired at node 2 and node 8

• GPS is used at node 6

Table 5.2 shows the coverage information of the selected method. The coverage

details includes the bug type, resource used and the statement coverage.
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Figure 5.2: CFG of onCreate():AndroidRun Application

Figure 5.3: Test Paths of onCreate():AndroidRun Application

Initially, the energy bug weights of each test paths will be calculated using the

available coverage information.

The test path’s weight will be computed by adding the normalized energy bug

weight and statement coverage. The values are normalized to the range of 0 to 1
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Table 5.2: TCP Resource, CFG Test Paths and Bug-prone paths in each
Android applications

Test
Paths

Energy Bug
Covered

No of
Bugs

Resource
Used

Statement
Covered

TP1 AcqBug 1 GPS 1, 8, 9, 11, 12,
15, 16, 17, 18, 19

TP2 AcqBug 1 GPS 1, 8, 9, 11, 12,
13, 14, 16, 18, 19

TP3 AcqBug 1 GPS 1, 8, 9, 10, 11,
12, 15, 16, 18, 19

TP4 AU-Bug 1 GPS 1, 2, 3, 5, 6, 7,
9, 11, 12, 15, 16,
18, 19

TP5 AU-Bug 1 GPS 1, 2, 3, 4, 6, 7,
9, 11, 12, 15, 16,
18, 19

for both statement coverage and energy bug weights.

Table 5.3 shows the energy bug weights of test paths, its normalized values,

normalized statement coverage and the weight of the entire test path.

Table 5.3: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage:Step I

Test
Path
No

Energy
Bug
Weight

Normalized
Energy Bug
Weight

Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP1 6 1 10 0 0.5

TP2 6 1 10 0 0.5

TP3 6 1 10 0 0.5

TP4 4 0 13 1 0.5

TP5 4 0 13 1 0.5
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As the test path weight of each test path is equal therefore, we can select any of

them therefore, we have selected TP1.

So, <PrT> = { TP1 }

As the prioritization algorithm follows the additional strategy, therefore for calcu-

lating the weights of test paths, additional coverage information will be required

(mentioned in table 5.4)

Table 5.4 shows the additional coverage information of the selected method, after

appending TP1 in prioritized test suite.

Table 5.4: Additional Coverage Information of Test Paths of onCreate(): An-
droidRun Application

Test Paths Additional
Energy Bug
Covered

Additional
Statement
Covered

TP2 0 2

TP3 0 1

TP4 AU-Bug 5

TP5 AU-Bug 5

The process of test path’s weight calculation continues until all the test paths will

be prioritized. Table 5.5 shows the weights of test paths. TP4 and TP5 have the

Table 5.5: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage:Step II

Test
Path
No

Additional
Energy
Bug
Weight

Normalized
Energy Bug
Weight

Additional
Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP2 0 0 2 0.25 0.125
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Test
Path
No

Additional
Energy
Bug
Weight

Normalized
Energy Bug
Weight

Additional
Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP3 0 0 1 0 0

TP4 4 1 5 1 1

TP5 4 1 5 1 1

highest weights so choose among any of them and append to the prioritized list.

So, <PrT> = { TP1, TP4 }

After selecting the TP4, the residual coverage information is updated shown in

table 5.6.

Table 5.6: Additional Coverage Information of Test Paths of onCreate(): An-
droidRun Application -II

Test Paths Additional
Energy Bug
Covered

Additional
Statement
Covered

TP2 0 2

TP3 0 1

TP5 0 1

All the Energy Bugs have been covered but statements are still not covered and all

test paths are not prioritized. Therefore, repeat the process of weight calculation

as shown in table 5.7.

From table 5.7, it can be seen that TP2 has the highest weight so TP2 is selected

and appended to the list.

So, <PrT> = { TP1, TP4, TP2 }
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Table 5.7: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage:Step III

Test
Path
No

Additional
Energy
Bug
Weight

Normalized
Energy Bug
Weight

Additional
Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP2 0 0 2 0.33 0.33

TP3 0 0 1 0 0

TP5 0 0 1 0 0

Table 5.8 shows the additional information after appending TP2 to the prioriti-

zation list.

Table 5.8: Additional Coverage Information of Test Paths of onCreate(): An-
droidRun Application -III

Test Paths Additional
Energy Bug
Covered

Additional
Statement
Covered

TP3 0 1

TP5 0 1

Table 5.9: Test Path Weight Calculation from Normalized Energy Bug Weight
and Statement Coverage:Step IV

Test
Path
No

Additional
Energy
Bug
Weight

Normalized
Energy Bug
Weight

Additional
Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP3 0 0 1 1 0.5

TP5 0 0 1 1 0.5
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Both the remaining test paths (in table 5.9) have the same weight and covers

different statements therefore they are selected one by one.

Hence the prioritized list will be,

<PrT> = { TP1, TP4, TP2, TP3, TP5 }

5.2.2 onLoctaionChange():AndroidRun Application

Another function from the same application uses the GPS resource as well. There-

fore, the complete prioritization process will be applied to that function as well.

CFG of the other function named onLocationChange() is shown in figure 5.4.

Figure 5.4: CFG of onLoctaionChange():AndroidRun Application
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onLocationChange function of AndroidRun is statically analyzed and the nodes

are annotated as follows:

• GPS is acquired at node 4 and node 12

• but GPS is not used or released

Figure 5.5 shows the test paths of the CFG shown in figure 5.4. These test paths

are generated using the node coverage criteria through AutoTester Tool, based on

the CFG shown in figure 5.4. Four test paths are generated by the tool.

Figure 5.5: Test Paths of onLoctaionChange():AndroidRun Application

Table 5.10 includes each test path’s statement coverage and energy bug coverage

w.r.t resource being used.

Table 5.10: Coverage Information of Test Paths of onLoctaionChange(): An-
droidRun Application

Test
Paths

Energy Bug
Covered

No of
Bugs

Resource
Used

Statement
Covered

TP1 No Bug 0 N/a 1, 14, 15, 16

TP2 No Bug 0 N/a 1, 2, 12, 13, 15,
16

TP3 AcqBug 1 GPS 1, 2, 3, 5, 6, 7, 8,
9, 10, 11, 13, 15,
16

TP4 AcqBug 1 GPS 1, 2, 3, 4, 5, 11,
13, 15, 16
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Table 5.11: onLocationChange(): Test Path Weight Calculation from Nor-
malized Energy Bug Weight and Statement Coverage:Step-I

Test
Path
No

Energy
Bug
Weight

Normalized
Energy Bug
Weight

Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP1 0 0 4 0 0

TP2 0 0 6 0.2 0.1

TP3 9 1 14 1 1

TP4 9 1 9 0.5 0.75

From the table 5.11, shows the test path’s normalized weights and cumulative

weight. Based on the test path weight; TP3 is selected as the weight of the test

path is the highest among all.

<PrT>= { TP3 }

Table 5.12: onLocationChange(): Test Path Weight Calculation from Nor-
malized Energy Bug Weight and Statement Coverage-StepII

Test
Path
No

Additional
Energy
Bug
Weight

Normalized
Energy Bug
Weight

Additional
Statement
Coverage

Normalized
Statement
Coverage

Test Path
Weight

TP1 0 0 1 1 0.5

TP2 0 0 1 1 0.5

TP4 9 1 1 1 1

Table 5.12 shows the additional coverage information after selecting TP3. As the

weight of TP4 is the highest among all, so TP4 is selected.

<PrT> = { TP3, TP4 }
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Table 5.13: onLocationChange(): Test Path Weight Calculation from Nor-
malized Energy Bug Weight and Statement Coverage-StepIII

Test
Path
No

Additional
Energy
Bug
Weight

Normalized
Energy Bug
Weight

Additional
State-
ment
Coverage

Normalized
Statement
Coverage

Test
Path
Weight

TP1 0 0 1 1 0.5

TP2 0 0 1 1 0.5

As both of the remaining test paths have the similar weights as shown in table

5.13 therefore, TP1 will be selected after TP4..

<PrT> = { TP3, TP4, TP1 }

And then the last test path will be appended at the end. So, the prioritized list

will be

<PrT> = { TP3, TP4, TP1, TP2 }

5.3 Evaluation Parameters

For any approach presented in the domain of test case prioritization, it is essen-

tial to evaluate their effectiveness by performing metric measurements. Therefore,

evaluation metric is significant to measure the efficiency of any test case prioriti-

zation approach. Figure 5.6 depicts the widely utilized evaluation metrics being

used in this domain [58].

Figure shows that the Average Percentage Fault Detection (APFD) metric has

been widely used for evaluating TCP techniques whereas execution time is the

least used metric for this purpose. While using the APFD as evaluation metric,

it has been assumed that each test path incurs the same execution time and cost

[34].
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Figure 5.6: TCP Evaluation Metric Types [58]

Formula to calculate the APFD value is defined as follows:

APFD = 1− TF1 + TF2 + TF3 + .....+ TFn

nm
+

1

2n
(5.1)

Where n is the number of test cases, m represents the number of faults and TFi

is the order of the first test case that reveals the ith fault Fi.

To access the proposed prioritization approach, we have used two variants of APFD

metric, which is APDF-Bug variant and APFD-Statement Coverage variant.

5.3.1 APFD-Bug Variant

In the bug variant metric of APFD, the energy bugs are considered as the faults,

which will be calculated using the following equation.

APFDBug = 1− TB1 + TB2 + TB3 + .....+ TBn

nm
+

1

2n
(5.2)

Where T is the test suite containing n test cases and B is the set of m energy bugs

revealed by T. For ordering T’, TBi is the order of the first test case that reveals

the ith energy bug Bi.
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5.3.2 APFD-Statement Coverage Variant

In the statement coverage variant metric of APFD, the faults are seeded in some

lines of code which are considered as the faults, which will be calculated using the

following equation.

APFDStC = 1− TSC1 + TSC2 + TSC3 + .....+ TSCn

nm
+

1

2n
(5.3)

Where T is the test suite containing n test cases and SC is the set of m statement

level faults revealed by T. For ordering T’, TSCi is the order of the first test case

that reveals the ith statement fault SCi.

5.4 Results

We have used 10 different open-source Android application available on GitHub.

The selected applications use different resources like GPS, Wi-Fi, Bluetooth and

wakeLock.

Table 5.14: Application’s APFDBug , APFDStC and APFD(B+St) values at α
= 0.5

Sr No Applications APFDBug APFDStC APFD(B+St)

1 AndroinRun 0.83 0.77 0.78

2 Jamendo 0.8 0.9 0.87

3 Open Camera 0.81 0.76 0.77

4 A2DP volume 0.84 0.73 0.72

5 Apollo 0.75 0.75 0.75

6 Andromatic 0.79 0.79 0.73

7 K9 Mail 0.86 0.72 0.75

8 MyTracks 0.79 0.67 0.66

9 Find3 0.69 0.621 0.63

10 WiFiGPS Loca-
tion

0.8 0.7 0.78
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Initially the experiment is performed keeping the alpha value as 0.5. Table 5.14

shows the APFDBug, APFDStC and APFD(B+St) values.

APFDBug, APFDStC and APFD(B+St) value for each application has been cal-

culated for each application. APFD(B+St) has been calculated considering both

energy bugs and the statement level faults at the same time, shown in table 5.14.

Figure 5.7: Application’s APFDBug , APFDStC and APFD(B+St) values

Figure 5.7 shows that the energy bug revealing capability of the proposed approach

is between 70-80%. The graph shows that the in the majority of the applications,

the proposed approach detects 80% of the energy bugs. While in two application

Apollo and find3 the results are less than 80% (80% < but > 70%).

75 to 85% the statement level faults are uncovered using the proposed TCP tech-

nique. Whereas in Jamendo (application) 90% of the statement level faults are

revealed while in Mytracks and Find3 ration remains between 63 to 70%.

However, considering both types of faults at a time, results are somewhat similar to

the APFDBug. Higher fault revealing percentage can be seen in Jamendo (aprox

87%). Find3 and Mytracks shows less fault coverage percentage which is between

60 to 70%.
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5.5 Comparison

For comparing our approach, we have selected energy-aware test suite minimiza-

tion [38]. The paper presents two approaches that identifies energy intensive seg-

ments of the code and performs test suite minimization.

Table 5.15: Comparison of Proposed Approach with Existing Approach

Comparison
Factors

Energy aware
Test-Suite
Minimization
[38]

Proposed En-
ergy aware
Prioritization
Approach

Granularity
Level

Method Level Statement Level

Code Coverage No Yes

Energy Bug
Coverage

Yes Yes

Prioritization Vs
Minimization

Minimization
is used, which
removes the
redundant test
cases

Prioritization al-
gorithm is ap-
plied which does
not discards any
of the test case

Energy Cost Es-
timation

Executes the
test paths and
based on method
invocation and
System APIs

Energy based
weights are cal-
culated without
executing the
test paths

Table 5.15 shows the comparison between proposed approach and the approach

presented in [38], these points are further elaborated as follows:

• Approach Granularity: The approach presented in the selected paper

is the method level approach which covers energy-greedy segments of the
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code. Test paths covering more energy greedy segments is considered as

the most energy intensive path of the application. But considering coarse

grained granularity level does not ensures the statement level coverage of

the application. As the method may have many paths inside it, therefore

executing a method does not ensure that all the paths of the method are

executed.

Our approach overcomes this loop hole by presenting fine grained approach

that works on the statement level. The approach will be able to detect

the bug-prone paths inside the methods. Hence providing both the energy

coverage and the statement level coverage.

• Code Coverage: Method level approach does not ensure code coverage

as it does not cover all the statements inside a method. Therefore, the

approach presented in [38] only focuses on the energy intensive paths not on

the functionality bugs.

Keeping this point in consideration, we presented an approach that will

be able to provide the code coverage along with the energy bug coverage.

The proposed approach considers statement coverage as well as energy bug

coverage while calculating the weights of the test paths. Statement coverage

has been given equal importance while calculating the weights hence makes

the technique more efficient in detecting functionality bugs as well as energy

bugs.

• Energy Bugs: Despite of calculating energy consumption of the segments,

our approach focuses on the energy bugs that can appear in the code seg-

ments making it consumes more energy while execution. The minimization

approach is not able to uncover the possible energy bugs which may occur

while execution.

• Prioritization vs Minimization: Test Suite minimization approach

tends to remove redundant test cases using some criteria in order to reduce

the size of the test suite. The redundant test cases are removed permanently,
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however empirical evidences proves that test suite’s fault detection capability

can be compromised by minimization [2]. Additionally, any test case can be

considered as redundant with one specific criterion but is not redundant with

reference to any other criteria. But test case prioritization schedules the test

cases in order to increase their effectiveness. As the prioritization technique

doesn’t discards any test case therefore the drawbacks of the minimization

approach can be avoided by preferring TCP over TSM.

• Energy Cost Estimation: The paper presented Integer Linear Pro-

gramming based approach for TSM which executes the test paths to detect

energy intensive code segments (i.e. methods) based on method invocation

and System APIs. Executing the test paths makes it more costly (in terms of

time and resource utilization required for execution). Our approach presents

greedy approach for prioritizing the test suites. For prioritizing the test

suite, energy based weights are calculated without executing the test paths.



Chapter 6

Conclusion and Future Work

Now-a-days applications may undergo several changes for incorporating news re-

quirements or rectifying the bugs. Therefore, regression testing is required where

there is need to test the newly built version of that software. Additionally, with

the growth in size and complexity of mobile applications energy bugs become an

important factor to be considered. Keeping these factors in consideration energy

aware testing and functional testing needs to be performed in parallel for testing

the mobile applications.

In this research, we have proposed an energy aware test case prioritization ap-

proach for Android applications. The proposed technique works on statement

level and is able to detect energy bugs as well as the functionality bugs. The exist-

ing techniques work on method level which only cover energy greedy segments of

the code and unable to detect code-level energy bugs and functionality bugs. Any

path in the CFG (Control Flow Graph) which acquires or uses a resource but does

not release it at the end is considered as a bug-prone path. The proposed approach

assigns weights to each test paths based on their energy bug and statement cover-

age. Using the assigned weights, the test case prioritization is performed. Results

shows that the proposed technique is able to detect 72 to 87% of the energy bugs.

Similar percentage is observed in detecting both the functionality and energy bugs

collectively. but two applications (MyTracks and Find3) show some variation by

detecting giving 60-70% of the bugs.

63
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Extending our approach, several other directions can be studied in future. The

work can be extended to consider energy hotspots at the code level for assigning

weights of test paths. While calculating weights w.r.t energy hotspots the chal-

lenging factor is to calculate the weights based on tail energy hotspot. Tail energy

hotspot is basically the energy consumed by acquiring any resource too early or

releasing it too late. Similarly, the approach can be extended to the application

level by detecting the energy and functional bugs collectively. For considering

energy bug at application level, test paths from Event Flow Graph (EFG) need

to be generated and then the proposed prioritization criteria will be applied to

obtain prioritized test cases. Apart from that, other graph coverage criterion (i.e.,

branch, loop coverage etc.) can be applied and study the variations in results.
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